In the big data and AI era, context is widely exploited as extra information which makes it easier to learn a more complex pattern in machine learning systems. However, most of the existing related studies seldom take context into account. The difficulty lies in the unknown generalization ability of both context and its modeling techniques across different scenarios. To fill the above gaps, we conduct a large-scale analytical and empirical study on the spatiotemporal crowd prediction (STCFP) problem that is a widely-studied and hot research topic. We mainly make three efforts:(i) we develop new taxonomy about both context features and context modeling techniques based on extensive investigations in prevailing STCFP research; (ii) we conduct extensive experiments on seven datasets with hundreds of millions of records to quantitatively evaluate the generalization ability of both distinct context features and context modeling techniques; (iii) we summarize some guidelines for researchers to conveniently utilize context in diverse applications.
翻译:在大数据和AI时代,环境被广泛作为额外信息加以利用,使得更容易在机器学习系统中学习更复杂的模式,但是,大多数现有的相关研究很少考虑到背景情况。困难在于背景及其建模技术在不同情景下具有未知的概括能力。为了填补上述空白,我们对零星时人群预测(STCFP)问题进行了大规模分析和经验研究,这是一个广泛研究和热门的研究专题。我们主要作出三项努力:(一) 我们根据科学、技术和工艺中心进行的广泛调查,就背景特征和背景建模技术开发新的分类方法;(二) 我们用数亿个记录对七套数据集进行广泛的实验,对不同背景特征和背景建模技术的概括能力进行定量评估;(三) 我们总结一些研究人员在各种应用中方便利用背景的准则。