In this paper, we present a perception-action-communication loop design using Vision-based Graph Aggregation and Inference (VGAI). This multi-agent decentralized learning-to-control framework maps raw visual observations to agent actions, aided by local communication among neighboring agents. Our framework is implemented by a cascade of a convolutional and a graph neural network (CNN / GNN), addressing agent-level visual perception and feature learning, as well as swarm-level communication, local information aggregation and agent action inference, respectively. By jointly training the CNN and GNN, image features and communication messages are learned in conjunction to better address the specific task. We use imitation learning to train the VGAI controller in an offline phase, relying on a centralized expert controller. This results in a learned VGAI controller that can be deployed in a distributed manner for online execution. Additionally, the controller exhibits good scaling properties, with training in smaller teams and application in larger teams. Through a multi-agent flocking application, we demonstrate that VGAI yields performance comparable to or better than other decentralized controllers, using only the visual input modality and without accessing precise location or motion state information.


翻译:在本文中,我们分别使用基于愿景的图表汇总和推断(VGAI)展示了感知-行动-通信环环路设计。这一多剂分散式的学习到控制框架绘制了对代理行动的原始视觉观测图,并借助于邻近物剂之间的当地通信。我们的框架由一系列的进化和图形神经网络(CNN/GNN)实施,涉及代理人一级的视觉和特征学习,以及群集级的通信、当地信息汇总和代理物动作推断。通过联合培训CNN和GNNN, 图像特征和通信信息被联在一起学习,以更好地应对具体任务。我们利用模仿式学习在离线阶段培训VGAI控制器,依靠集中的专家控制器。这导致一个学习的VGAI控制器能够以分布方式部署用于在线执行。此外,控制器展示了良好的规模特性,在规模小的团队中进行了培训,在更大的团队中应用。通过多剂组合应用,我们证明VGAI产生与其他分散式控制器的类似性或优于其他分散式控制器的绩效,仅使用视觉输入方式,没有访问精确位置或移动状态信息。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
专知会员服务
110+阅读 · 2020年3月12日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
【综述笔记】Graph Neural Networks in Recommender Systems
图与推荐
5+阅读 · 2020年12月8日
一文读懂图卷积GCN
计算机视觉life
21+阅读 · 2019年12月21日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
CNN之卷积层
机器学习算法与Python学习
8+阅读 · 2017年7月2日
Arxiv
0+阅读 · 2022年1月4日
Arxiv
8+阅读 · 2021年5月9日
Arxiv
4+阅读 · 2020年9月28日
SIGN: Scalable Inception Graph Neural Networks
Arxiv
5+阅读 · 2020年7月15日
Arxiv
7+阅读 · 2018年1月10日
VIP会员
相关资讯
【综述笔记】Graph Neural Networks in Recommender Systems
图与推荐
5+阅读 · 2020年12月8日
一文读懂图卷积GCN
计算机视觉life
21+阅读 · 2019年12月21日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
CNN之卷积层
机器学习算法与Python学习
8+阅读 · 2017年7月2日
Top
微信扫码咨询专知VIP会员