The deep image prior (DIP) is a state-of-the-art unsupervised approach for solving linear inverse problems in imaging. We address two key issues that have held back practical deployment of the DIP: the long computing time needed to train a separate deep network per reconstruction, and the susceptibility to overfitting due to a lack of robust early stopping strategies in the unsupervised setting. To this end, we restrict DIP optimisation to a sparse linear subspace of the full parameter space. We construct the subspace from the principal eigenspace of a set of parameter vectors sampled at equally spaced intervals during DIP pre-training on synthetic task-agnostic data. The low-dimensionality of the resulting subspace reduces DIP's capacity to fit noise and allows the use of fast second order optimisation methods, e.g., natural gradient descent or L-BFGS. Experiments across tomographic tasks of different geometry, ill-posedness and stopping criteria consistently show that second order optimisation in a subspace is Pareto-optimal in terms of optimisation time to reconstruction fidelity trade-off.
翻译:之前的深度图像( DIP) 是解决成像线性反向问题的一种最先进的不受监督的方法。 我们处理两个阻碍DIP实际部署的两个关键问题:每次重建训练一个单独的深网络需要较长的计算时间,以及由于在无人监督的环境中缺乏强有力的早期停止战略而容易过度适应。 为此, 我们限制DIP优化到整个参数空间的稀薄线性子空间。 我们从DIP在合成任务敏感数据培训前的间隔间距内以同等空间抽样抽样的一组参数矢量的主要密封空间中建造了子空间。 由此产生的子空间的低维度降低了DIP适应噪音的能力, 并允许使用快速的第二顺序优化方法, 例如, 自然梯度下降或L- BFGS。 在不同几何、 错测和停止标准等不同地形任务中进行的实验一致显示, 亚空间的第二顺序优化在重建忠实贸易的时间方面是最佳的。