The determinant lower bound of Lovasz, Spencer, and Vesztergombi [European Journal of Combinatorics, 1986] is a powerful general way to prove lower bounds on the hereditary discrepancy of a set system. In their paper, Lovasz, Spencer, and Vesztergombi asked if hereditary discrepancy can also be bounded from above by a function of the hereditary discrepancy. This was answered in the negative by Hoffman, and the largest known multiplicative gap between the two quantities for a set system of $m$ substes of a universe of size $n$ is on the order of $\max\{\log n, \sqrt{\log m}\}$. On the other hand, building on work of Matou\v{s}ek [Proceedings of the AMS, 2013], recently Jiang and Reis [SOSA, 2022] showed that this gap is always bounded up to constants by $\sqrt{\log(m)\log(n)}$. This is tight when $m$ is polynomial in $n$, but leaves open what happens for large $m$. We show that the bound of Jiang and Reis is tight for nearly the entire range of $m$. Our proof relies on a technique of amplifying discrepancy via taking Kronecker products, and on discrepancy lower bounds for a set system derived from the discrete Haar basis.
翻译:暂无翻译