In the realm of wireless communication, stochastic modeling of channels is instrumental for the assessment and design of operational systems. Deep learning neural networks (DLNN), including generative adversarial networks (GANs), are being used to approximate wireless Orthogonal frequency-division multiplexing (OFDM) channels with fading and noise, using real measurement data. These models primarily focus on channel output (y) distribution given input x: p(y|x), limiting their application scope. DLNN channel models have been tested predominantly on simple simulated channels. In this paper, we build both GANs and feedforward neural networks (FNN) to approximate a more general channel model, which is represented by a conditional probability density function (PDF) of receiving signal or power of node receiving power Prx: f_p_rx|d(()), where is communication distance. The stochastic models are trained and tested for the impact of fading channels on transmissions of OFDM QAM modulated signal and transmissions of general signal regardless of modulations. New metrics are proposed for evaluation of modeling accuracy and comparisons of the GAN-based model with the FNN-based model. Extensive experiments on Nakagami fading channel show accuracy and the effectiveness of the approaches.
翻译:暂无翻译