The fuzzy or soft $k$-means objective is a popular generalization of the well-known $k$-means problem, extending the clustering capability of the $k$-means to datasets that are uncertain, vague, and otherwise hard to cluster. In this paper, we propose a semi-supervised active clustering framework, where the learner is allowed to interact with an oracle (domain expert), asking for the similarity between a certain set of chosen items. We study the query and computational complexities of clustering in this framework. We prove that having a few of such similarity queries enables one to get a polynomial-time approximation algorithm to an otherwise conjecturally NP-hard problem. In particular, we provide algorithms for fuzzy clustering in this setting that asks $O(\mathsf{poly}(k)\log n)$ similarity queries and run with polynomial-time-complexity, where $n$ is the number of items. The fuzzy $k$-means objective is nonconvex, with $k$-means as a special case, and is equivalent to some other generic nonconvex problem such as non-negative matrix factorization. The ubiquitous Lloyd-type algorithms (or alternating minimization algorithms) can get stuck at a local minimum. Our results show that by making a few similarity queries, the problem becomes easier to solve. Finally, we test our algorithms over real-world datasets, showing their effectiveness in real-world applications.
翻译:模糊或软 $k美元 平均值的目标是对众所周知的 $k美元 汇率问题进行流行化的概括化, 将 $k美元 汇率的组合能力扩大到不确定、 模糊或难以分组的数据集。 特别是, 我们在此文件中提出一个半监督的活跃组合框架, 允许学习者与一个神器( Domain 专家) 互动, 询问某组选定的项目之间的相似性 。 我们研究在这个框架中集成的查询和计算复杂性 。 我们证明, 有一些类似的查询, 使得人们能够将 $k美元 的混合时间近似算法的组合能力扩大到一个不那么简单、 NPP 硬的数据集 。 特别是, 我们为这个设置的模糊组合提供了算法, 要求学习者与一个神器( mathforf{poly} (k)\log n) 相近, 询问和运行一个多时- 时间- 相近的查询, 在那里可以找到项目的数量。 模糊 $k$k$s- decalalality 目标是非convex, 。 和 exal- exliveralation- translational- 等同我们一个特殊的、 样的、 等同的、 exal- tral- exal- ex- exal- 、 等同于一个特殊的、 ex- 、 exalviolviolview exaldalus 、 、 、 、 、 exal- ex- ex- 、 ex- ex- 、 ex- ex- 、 ex- 、 ex- ex- ex- ex- 、 、 extrax- ex- exalvicolvicolvical- 、 、 、 、 、 exal- ex- exal- exal- exal- exal- exal- ex- ex- exal- exal- 、 ex- ex- ex- ex- ex- ex- ex- ex- ex- ex- ex- ex- ex- ex- ex- ex-