Given an unnormalized target distribution we want to obtain approximate samples from it and a tight lower bound on its (log) normalization constant log Z. Annealed Importance Sampling (AIS) with Hamiltonian MCMC is a powerful method that can be used to do this. Its main drawback is that it uses non-differentiable transition kernels, which makes tuning its many parameters hard. We propose a framework to use an AIS-like procedure with Uncorrected Hamiltonian MCMC, called Uncorrected Hamiltonian Annealing. Our method leads to tight and differentiable lower bounds on log Z. We show empirically that our method yields better performances than other competing approaches, and that the ability to tune its parameters using reparameterization gradients may lead to large performance improvements.
翻译:鉴于我们想要从它那里获得大约的样本,并且从它(log)正常化常数上严格下限,因此,我们想从它那里获得大约的样本,而对于它(log)正常化常数的日志 Z. Annaaled Streaty Sampling (AIS) 和 Hamiltonian MCMC (AIS) 来说,它是一个强大的方法,可以用来做到这一点。它的主要缺点是它使用非差别化的过渡内核,这使其许多参数难以调适。我们提议了一个框架,用一个类似AIS的程序来使用未经校正的汉密尔顿·安纳宁 MC (MMC) 。我们的方法导致日志Z 上严格和可区分的下限。我们从经验上表明,我们的方法比其他相互竞争的方法产生更好的性能,而使用重新补偿梯度来调节参数的能力可能会带来很大的性能改进。