Session-based recommendation systems(SBRS) are more suitable for the current e-commerce and streaming media recommendation scenarios and thus have become a hot topic. The data encountered by SBRS is typically highly sparse, which also serves as one of the bottlenecks limiting the accuracy of recommendations. So Contrastive Learning(CL) is applied in SBRS owing to its capability of improving embedding learning under the condition of sparse data. However, existing CL strategies are limited in their ability to enforce finer-grained (e.g., factor-level) comparisons and, as a result, are unable to capture subtle differences between instances. More than that, these strategies usually use item or segment dropout as a means of data augmentation which may result in sparser data and thus ineffective self-supervised signals. By addressing the two aforementioned limitations, we introduce a novel multi-granularity CL framework. Specifically, two extra augmented embedding convolution channels with different granularities are constructed and the embeddings learned by them are compared with those learned from original view to complete the CL tasks. At factor-level, we employ Disentangled Representation Learning to obtain finer-grained data(e.g. factor-level embeddings), with which we can construct factor-level convolution channels. At item-level, the star graph is deployed as the augmented data and graph convolution on it can ensure the effectiveness of self-supervised signals. Compare the learned embeddings of these two views with the learned embeddings of the basic view to achieve CL at two granularities. Finally, the more precise item-level and factor-level embeddings obtained are referenced to generate personalized recommendations for the user. The proposed model is validated through extensive experiments on two benchmark datasets, showcasing superior performance compared to existing methods.


翻译:会话型推荐系统(SBRS)更适用于当前的电子商务和流媒体推荐场景,因此已成为热门话题。 SBRS 遇到的数据通常高度稀疏,这也是限制推荐准确性的瓶颈之一。因此,在稀疏数据情况下提高嵌入学习的能力,我们应用对比学习(CL)于 SBRS。然而,现有的 CL 策略受到限制,无法强制执行更细粒度(例如,因子级别)的比较,因此无法捕捉实例间的细微差异。此外,这些策略通常使用项或段落抽出作为数据增强的手段,这可能会导致更稀疏的数据,从而无法提供有效的自监督信号。解决了上述两个限制,我们引入了一种新的多粒度 CL 框架。具体而言,构建两个不同粒度的额外嵌入卷积通道,并将通过它们学习到的嵌入与原始视图所学到的比较以完成 CL 任务。在因子级别上,我们采用细粒度表征学习来获得更细粒度的因子级别嵌入,从而可以构建因子级别卷积通道。在项级别上,星形图用作增强数据,对其进行图卷积可以确保自监督信号的有效性。将学到的这两个视图的嵌入与学到的基本视图的嵌入进行对比,以在两个粒度上完成 CL。最后,参考获得的更精确的项级别和因子级别嵌入生成个性化推荐。通过在两个基准数据集上进行广泛实验验证了所提出的模型,表现优于现有方法。

0
下载
关闭预览

相关内容

视频自监督学习综述
专知会员服务
51+阅读 · 2022年7月5日
最新10篇对比学习推荐前沿工作
机器学习与推荐算法
2+阅读 · 2022年9月14日
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
SIGIR2022 | 推荐算法之对比学习篇
机器学习与推荐算法
6+阅读 · 2022年7月21日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
推荐中的序列化建模:Session-based neural recommendation
机器学习研究会
18+阅读 · 2017年11月5日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关VIP内容
视频自监督学习综述
专知会员服务
51+阅读 · 2022年7月5日
相关资讯
最新10篇对比学习推荐前沿工作
机器学习与推荐算法
2+阅读 · 2022年9月14日
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
SIGIR2022 | 推荐算法之对比学习篇
机器学习与推荐算法
6+阅读 · 2022年7月21日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
推荐中的序列化建模:Session-based neural recommendation
机器学习研究会
18+阅读 · 2017年11月5日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员