Generative models trained with Differential Privacy (DP) can be used to generate synthetic data while minimizing privacy risks. We analyze the impact of DP on these models vis-a-vis underrepresented classes/subgroups of data, specifically, studying: 1) the size of classes/subgroups in the synthetic data, and 2) the accuracy of classification tasks run on them. We also evaluate the effect of various levels of imbalance and privacy budgets. Our analysis uses three state-of-the-art DP models (PrivBayes, DP-WGAN, and PATE-GAN) and shows that DP yields opposite size distributions in the generated synthetic data. It affects the gap between the majority and minority classes/subgroups; in some cases by reducing it (a "Robin Hood" effect) and, in others, by increasing it (a "Matthew" effect). Either way, this leads to (similar) disparate impacts on the accuracy of classification tasks on the synthetic data, affecting disproportionately more the underrepresented subparts of the data. Consequently, when training models on synthetic data, one might incur the risk of treating different subpopulations unevenly, leading to unreliable or unfair conclusions.


翻译:以不同隐私(DP)培训的生成模型可用于生成合成数据,同时尽量减少隐私风险。我们分析了DP对这些模型相对于代表性不足的类别/分组数据的影响,特别是研究:(1) 合成数据中的类别/分组规模,(2) 对其执行的分类任务的准确性。我们还评估了不同程度的不平衡和隐私预算的影响。我们的分析使用了三种最先进的DP模型(PrivBayes、DP-WGAN和PATE-GAN),并表明DP在生成的合成数据中产生不同大小的分布。在某些情况下,它影响到多数类和少数类/分组之间的差距;在某些情况下,通过减少这一差距(“Robin Hood”效应),而在另一些情况下,通过增加分类任务(“Matthew”效应),这导致(相似的)对合成数据分类任务的准确性产生不同影响,对代表性不足的数据子部分的影响更大。因此,当关于合成数据的培训模型的培训模型可能带来对不同分组进行不均匀或不公平结论的风险。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
30+阅读 · 2021年8月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员