The Wasserstein barycenter has been widely studied in various fields, including natural language processing, and computer vision. However, it requires a high computational cost to solve the Wasserstein barycenter problem because the computation of the Wasserstein distance requires a quadratic time with respect to the number of supports. By contrast, the Wasserstein distance on a tree, called the tree-Wasserstein distance, can be computed in linear time and allows for the fast comparison of a large number of distributions. In this study, we propose a barycenter under the tree-Wasserstein distance, called the fixed support tree-Wasserstein barycenter (FS-TWB) and its extension, called the fixed support tree-sliced Wasserstein barycenter (FS-TSWB). More specifically, we first show that the FS-TWB and FS-TSWB problems are convex optimization problems and can be solved by using the projected subgradient descent. Moreover, we propose a more efficient algorithm to compute the subgradient and objective function value by using the properties of tree-Wasserstein barycenter problems. Through real-world experiments, we show that, by using the proposed algorithm, the FS-TWB and FS-TSWB can be solved two orders of magnitude faster than the original Wasserstein barycenter.


翻译:瓦塞斯坦酒吧中心在各个领域进行了广泛研究,包括自然语言处理和计算机视觉。然而,它需要高昂的计算成本来解决瓦塞斯坦酒吧中心的问题,因为瓦塞斯坦距离的计算需要与支持数量有关的二次时间。相比之下,瓦塞斯坦距离(称为树-瓦塞斯坦距离)可以用线性时间计算,可以快速比较大量分布。在本研究中,我们提议在树-瓦萨尔斯坦距离下设立一个名叫固定树支持中心(Wasserstein 酒吧中心)的酒吧中心(FS-TWB)及其扩展,称为固定支持树使用瓦塞斯坦酒吧中心(FS-TSWB) 。更具体地说,我们首先显示FS-TWB和FS-TWB问题是线性最优化问题,可以通过预测的亚梯级血统进行快速比较。此外,我们提议一种更高效的算法,通过使用树-Wasserstein Bary中心中心(FSWBCentral-FS)的属性来解释子和客观功能价值,我们可以用WSFS-FS-FS-FSBC最快速的原水平来展示。

0
下载
关闭预览

相关内容

【Google-Marco Cuturi】最优传输,339页ppt,Optimal Transport
专知会员服务
48+阅读 · 2021年10月26日
专知会员服务
39+阅读 · 2021年8月20日
专知会员服务
42+阅读 · 2021年4月2日
专知会员服务
62+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
用 LDA 和 LSA 两种方法来降维和做 Topic 建模
AI研习社
13+阅读 · 2018年8月24日
已删除
将门创投
5+阅读 · 2018年6月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月27日
Arxiv
9+阅读 · 2021年3月8日
Arxiv
6+阅读 · 2018年4月24日
Arxiv
6+阅读 · 2018年3月12日
VIP会员
相关VIP内容
【Google-Marco Cuturi】最优传输,339页ppt,Optimal Transport
专知会员服务
48+阅读 · 2021年10月26日
专知会员服务
39+阅读 · 2021年8月20日
专知会员服务
42+阅读 · 2021年4月2日
专知会员服务
62+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
用 LDA 和 LSA 两种方法来降维和做 Topic 建模
AI研习社
13+阅读 · 2018年8月24日
已删除
将门创投
5+阅读 · 2018年6月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员