We propose a stable method to train Wasserstein generative adversarial networks. In order to enhance stability, we consider two objective functions using the $c$-transform based on Kantorovich duality which arises in the theory of optimal transport. We experimentally show that this algorithm can effectively enforce the Lipschitz constraint on the discriminator while other standard methods fail to do so. As a consequence, our method yields an accurate estimation for the optimal discriminator and also for the Wasserstein distance between the true distribution and the generated one. Our method requires no gradient penalties nor corresponding hyperparameter tuning and is computationally more efficient than other methods. At the same time, it yields competitive generators of synthetic images based on the MNIST, F-MNIST, and CIFAR-10 datasets.


翻译:我们提出一个稳定的方法来培训瓦塞斯坦基因对抗网络。为了增强稳定性,我们考虑使用基于康托罗维奇双轨制的基于康托罗维奇双轨制的两个客观功能,这是在最佳运输理论中产生的。我们实验性地表明,这种算法可以有效地对歧视者实施利普施茨限制,而其他标准方法却未能这样做。因此,我们的方法得出了对最佳歧视者以及真正分布和生成的瓦塞斯坦距离的准确估计。我们的方法不需要梯度罚款或相应的超分光计调整,而且比其他方法更有效率。与此同时,它产生有竞争力的合成图像生成者,这些图像以MNIST、F-MNIST和CIFAR-10数据集为基础。

0
下载
关闭预览

相关内容

Python图像处理,366页pdf,Image Operators Image Processing in Python
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
【电子书推荐】Data Science with Python and Dask
专知会员服务
44+阅读 · 2019年6月1日
生成对抗网络GANs学习路线
专知
36+阅读 · 2019年6月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月29日
Arxiv
8+阅读 · 2019年2月15日
Arxiv
11+阅读 · 2018年3月23日
Arxiv
6+阅读 · 2018年3月12日
Arxiv
12+阅读 · 2018年1月12日
Arxiv
4+阅读 · 2017年12月25日
VIP会员
相关资讯
生成对抗网络GANs学习路线
专知
36+阅读 · 2019年6月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年12月29日
Arxiv
8+阅读 · 2019年2月15日
Arxiv
11+阅读 · 2018年3月23日
Arxiv
6+阅读 · 2018年3月12日
Arxiv
12+阅读 · 2018年1月12日
Arxiv
4+阅读 · 2017年12月25日
Top
微信扫码咨询专知VIP会员