We show that the Strang splitting method applied to a diffusion-reaction equation with inhomogeneous general oblique boundary conditions is of order two when the diffusion equation is solved with the Crank-Nicolson method, while order reduction occurs in general if using other Runge-Kutta schemes or even the exact flow itself for the diffusion part. We prove these results when the source term only depends on the space variable, an assumption which makes the splitting scheme equivalent to the Crank-Nicolson method itself applied to the whole problem. Numerical experiments suggest that the second order convergence persists with general nonlinearities.
翻译:我们显示,在扩散方程式中,施压分解法适用于扩散-反应方程式,且具有不相容的一般斜面边界条件。 当扩散方程式用Crank-Nicolson法解决时,施压分解法是符合顺序的。 而如果使用其他龙格-库塔办法,甚至扩散方的精确流量本身,则通常会减少顺序。当源术语仅取决于空间变量时,我们证明这些结果,这一假设使分裂方程式相当于Crank-Nicolson法本身适用于整个问题。 数字实验表明,第二个分解法与一般的非线性一致。