BioBERT and BioMegatron are Transformers models adapted for the biomedical domain based on publicly available biomedical corpora. As such, they have the potential to encode large-scale biological knowledge. We investigate the encoding and representation of biological knowledge in these models, and its potential utility to support inference in cancer precision medicine - namely, the interpretation of the clinical significance of genomic alterations. We compare the performance of different transformer baselines; we use probing to determine the consistency of encodings for distinct entities; and we use clustering methods to compare and contrast the internal properties of the embeddings for genes, variants, drugs and diseases. We show that these models do indeed encode biological knowledge, although some of this is lost in fine-tuning for specific tasks. Finally, we analyse how the models behave with regard to biases and imbalances in the dataset.
翻译:生物BERT和BioMegatron是基于可公开获得的生物医学公司而适应生物医学领域的变异模型,因此,它们有可能对大规模生物知识进行编码。我们调查生物知识在这些模型中的编码和表述,以及生物知识在支持癌症精密医学中的推论的潜在效用,即对基因组变异的临床意义的解释。我们比较不同的变异器基线的性能;我们利用探测来确定不同实体编码的一致性;我们使用集群方法比较和比较基因、变异体、药物和疾病嵌入的内在特性。我们表明这些模型确实确实对生物知识进行了编码,尽管其中一些在微调具体任务时已经丢失了。最后,我们分析了模型如何对待数据集中的偏差和不平衡。