Medicinal synergy prediction is a powerful tool in drug discovery and development that harnesses the principles of combination therapy to enhance therapeutic outcomes by improving efficacy, reducing toxicity, and preventing drug resistance. While a myriad of computational methods has emerged for predicting synergistic drug combinations, a large portion of them may overlook the intricate, yet critical relationships between various entities in drug interaction networks, such as drugs, cell lines, and diseases. These relationships are complex and multidimensional, requiring sophisticated modeling to capture nuanced interplay that can significantly influence therapeutic efficacy. We introduce a salient deep hypergraph learning method, namely, Heterogeneous Entity Representation for MEdicinal Synergy prediction (HERMES), to predict anti-cancer drug synergy. HERMES integrates heterogeneous data sources, encompassing drug, cell line, and disease information, to provide a comprehensive understanding of the interactions involved. By leveraging advanced hypergraph neural networks with gated residual mechanisms, HERMES can effectively learn complex relationships/interactions within the data. Our results show HERMES demonstrates state-of-the-art performance, particularly in forecasting new drug combinations, significantly surpassing previous methods. This advancement underscores the potential of HERMES to facilitate more effective and precise drug combination predictions, thereby enhancing the development of novel therapeutic strategies.
翻译:暂无翻译