Uncertainty arises naturally inmany application domains due to, e.g., data entry errors and ambiguity in data cleaning. Prior work in incomplete and probabilistic databases has investigated the semantics and efficient evaluation of ranking and top-k queries over uncertain data. However, most approaches deal with top-k and ranking in isolation and do represent uncertain input data and query results using separate, incompatible datamodels. We present an efficient approach for under- and over-approximating results of ranking, top-k, and window queries over uncertain data. Our approach integrates well with existing techniques for querying uncertain data, is efficient, and is to the best of our knowledge the first to support windowed aggregation. We design algorithms for physical operators for uncertain sorting and windowed aggregation, and implement them in PostgreSQL.We evaluated our approach on synthetic and real world datasets, demonstrating that it outperforms all competitors, and often produces more accurate results.


翻译:由于数据输入错误和数据清理的模糊性等原因,不确定性自然产生许多应用领域。在不完整和概率性数据库中,以往的工作已经调查了语义学和对关于不确定数据的排名和头等查询的高效评估。然而,大多数方法都单独处理头等和排位问题,并且确实代表了使用不同、不兼容的数据模型的不确定输入数据和查询结果。我们提出了一种有效的方法,用于对不确定数据进行排位、头等和窗口查询的低和过份结果。我们的方法与现有查询不确定数据的技术融为一体,是高效的,并且对我们的最佳了解是首先支持窗口集成的。我们设计了实物操作者的算法,用于不确定的排序和窗口集成,并在PostgreSQL中加以实施。我们评估了我们关于合成和真实世界数据集的方法,表明它超越了所有竞争者,并且往往产生更准确的结果。

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员