With the rapid development of quantum computers, several applications are being proposed for them. Quantum simulations, simulation of chemical reactions, solution of optimization problems and quantum neural networks are some examples. However, problems such as noise, limited number of qubits and circuit depth, and gradient vanishing must be resolved before we can use them to their full potential. In the field of quantum machine learning, several models have been proposed. In general, in order to train these different models, we use the gradient of a cost function with respect to the model parameters. In order to obtain this gradient, we must compute the derivative of this function with respect to the model parameters. For this we can use the method called parameter-shift rule. This method consists of evaluating the cost function twice for each parameter of the quantum network. A problem with this method is that the number of evaluations grows linearly with the number of parameters. In this work we study an alternative method, called Natural Evolutionary Strategies (NES), which are a family of black box optimization algorithms. An advantage of the NES method is that in using it one can control the number of times the cost function will be evaluated. We apply the NES method to the binary classification task, showing that this method is a viable alternative for training quantum neural networks.
翻译:随着量子计算机的迅速发展,正在提出几种应用。量子计算机的迅速发展,正在为其提议几种应用。量子模拟、化学反应模拟、优化问题解决方案和量子神经网络就是其中的一些例子。然而,必须先解决诸如噪音、数量有限的qubits和电路深度以及梯度消失等问题,我们才能充分利用它们的潜力。在量子机器学习领域,已经提出了几种模型。一般地,为了培训这些不同的模型,我们使用与模型参数有关的成本函数梯度。为了获得这个梯度,我们必须计算模型参数参数参数参数中该函数的衍生物。为此,我们可以使用称为参数-权值规则的方法。这种方法包括量子网络每个参数的成本函数的两次评价。这种方法的一个问题是,评价数量随着参数数量的增加而线性增长。在这项工作中,我们研究一种替代方法,称为自然进化战略(NSA),这是黑箱优化算法的组合。国家空间研究中心方法的一个优点是,在使用该方法时可以控制成本函数的多少。这个方法包括量子规则。这个方法包括:对量子网络的费用函数进行两次的评估。我们将采用一个可行的量子学方法来评估。