This paper concerns the paraconsistent logic LPQ$^{\supset,\mathsf{F}}$ and an application of it in the area of relational database theory. The notions of a relational database, a query applicable to a relational database, and a consistent answer to a query with respect to a possibly inconsistent relational database are considered from the perspective of this logic. This perspective enables among other things the definition of a consistent answer to a query with respect to a possibly inconsistent database without resort to database repairs. In a previous paper, LPQ$^{\supset,\mathsf{F}}$ is presented with a sequent-style natural deduction proof system. In this paper, a sequent calculus proof system is presented because it is common to use a sequent calculus proof system as the basis of proof search procedures and such procedures may form the core of algorithms for computing consistent answers to queries.
翻译:本文涉及准一致逻辑LPQ$<unk> supset,\ mathsf{F<unk> $ 及其在关系数据库理论领域的应用。 从这一逻辑的角度考虑关系数据库的概念、适用于关系数据库的查询以及对可能不一致关系数据库的查询的一致答复。这一视角除其他外,可以定义对可能不一致数据库的查询的一致答复,而不必使用数据库的修复。在前一份文件中,LPQ$<unk> supset,\mathsf{F<unk> $ 以序列式自然扣减验证系统的形式提出。在本文件中,提出序列计数验证系统,因为使用序列计数验证系统作为证据搜索程序的基础是常见的,而这种程序可能构成计算查询一致答案的算法核心。</s>