Surrogate modeling has become a valuable technique for black-box optimization tasks with expensive evaluation of the objective function. In this paper, we investigate the relationship between the predictive accuracy of surrogate models and features of the black-box function landscape. We also study properties of features for landscape analysis in the context of different transformations and ways of selecting the input data. We perform the landscape analysis of a large set of data generated using runs of a surrogate-assisted version of the Covariance Matrix Adaptation Evolution Strategy on the noiseless part of the Comparing Continuous Optimisers benchmark function testbed.
翻译:代用模型已成为黑盒优化任务的宝贵技术,对目标功能进行了昂贵的评估。 在本文中,我们研究了代用模型的预测准确性和黑盒功能景观特征之间的关系。 我们还研究不同变异背景下地貌分析特征的特性以及选择输入数据的方法。我们利用代用模型辅助版本的《共变矩阵适应进化战略》,在比较连续多功能者基准功能测试台的无噪音部分,对生成的大量数据进行地貌分析。