We consider a standard federated learning (FL) architecture where a group of clients periodically coordinate with a central server to train a statistical model. We develop a general algorithmic framework called FedLin to tackle some of the key challenges intrinsic to FL, namely objective heterogeneity, systems heterogeneity, and infrequent and imprecise communication. Our framework is motivated by the observation that under these challenges, various existing FL algorithms suffer from a fundamental speed-accuracy conflict: they either guarantee linear convergence but to an incorrect point, or convergence to the global minimum but at a sub-linear rate, i.e., fast convergence comes at the expense of accuracy. In contrast, when the clients' local loss functions are smooth and strongly convex, we show that FedLin guarantees linear convergence to the global minimum, despite arbitrary objective and systems heterogeneity. We then establish matching upper and lower bounds on the convergence rate of FedLin that highlight the effects of intermittent communication. Finally, we show that FedLin preserves linear convergence rates under aggressive gradient sparsification, and quantify the effect of the compression level on the convergence rate. Our work is the first to provide tight linear convergence rate guarantees, and constitutes the first comprehensive analysis of gradient sparsification in FL.
翻译:我们考虑的是标准的联邦学习(FL)架构,在这个架构中,一组客户与中央服务器定期协调,以培训统计模式。我们开发了一个名为FedLin的一般算法框架,以应对FL固有的一些关键挑战,即客观差异性、系统差异性、不定期和不精确的通信。我们的框架的动机是观察到在这些挑战下,各种现有的FL算法存在基本的速度-准确性冲突:它们要么保证线性趋同,但到一个不正确的点,要么与全球最低线性趋同,但以亚线性速率,即快速趋同以牺牲准确性为代价。相比之下,当客户的当地损失功能是顺畅的和强烈的交融性时,我们显示FLin保证线性趋同性,尽管有武断的目标和系统差异性。我们随后在FLin的趋同率上下设定了相应的上限和下限,以突出间歇性通信的影响。最后,我们表明FedLin将线性趋同率保持在侵略性梯度下,并量化压缩水平对趋同率的第一影响。我们的工作是直线性分析。