We study pseudo-polynomial time algorithms for the fundamental \emph{0-1 Knapsack} problem. In terms of $n$ and $w_{\max}$, previous algorithms for 0-1 Knapsack have cubic time complexities: $O(n^2w_{\max})$ (Bellman 1957), $O(nw_{\max}^2)$ (Kellerer and Pferschy 2004), and $O(n + w_{\max}^3)$ (Polak, Rohwedder, and W\k{e}grzycki 2021). On the other hand, fine-grained complexity only rules out $O((n+w_{\max})^{2-\delta})$ running time, and it is an important question in this area whether $\tilde O(n+w_{\max}^2)$ time is achievable. Our main result makes significant progress towards solving this question: - The 0-1 Knapsack problem has a deterministic algorithm in $\tilde O(n + w_{\max}^{2.5})$ time. Our techniques also apply to the easier \emph{Subset Sum} problem: - The Subset Sum problem has a randomized algorithm in $\tilde O(n + w_{\max}^{1.5})$ time. This improves (and simplifies) the previous $\tilde O(n + w_{\max}^{5/3})$-time algorithm by Polak, Rohwedder, and W\k{e}grzycki (2021) (based on Galil and Margalit (1991), and Bringmann and Wellnitz (2021)). Similar to recent works on Knapsack (and integer programs in general), our algorithms also utilize the \emph{proximity} between optimal integral solutions and fractional solutions. Our new ideas are as follows: - Previous works used an $O(w_{\max})$ proximity bound in the $\ell_1$-norm. As our main conceptual contribution, we use an additive-combinatorial theorem by Erd\H{o}s and S\'{a}rk\"{o}zy (1990) to derive an $\ell_0$-proximity bound of $\tilde O(\sqrt{w_{\max}})$. - Then, the main technical component of our Knapsack result is a dynamic programming algorithm that exploits both $\ell_0$- and $\ell_1$-proximity. It is based on a vast extension of the ``witness propagation'' method, originally designed by Deng, Mao, and Zhong (2023) for the easier \emph{unbounded} setting only.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员