Recently more attention has been given to adversarial attacks on neural networks for natural language processing (NLP). A central research topic has been the investigation of search algorithms and search constraints, accompanied by benchmark algorithms and tasks. We implement an algorithm inspired by zeroth order optimization-based attacks and compare with the benchmark results in the TextAttack framework. Surprisingly, we find that optimization-based methods do not yield any improvement in a constrained setup and slightly benefit from approximate gradient information only in unconstrained setups where search spaces are larger. In contrast, simple heuristics exploiting nearest neighbors without querying the target function yield substantial success rates in constrained setups, and nearly full success rate in unconstrained setups, at an order of magnitude fewer queries. We conclude from these results that current TextAttack benchmark tasks are too easy and constraints are too strict, preventing meaningful research on black-box adversarial text attacks.


翻译:最近,对自然语言处理神经网络(NLP)的对抗性攻击得到了更多的关注。一个中心研究课题是调查搜索算法和搜索限制,并辅以基准算法和任务。我们实施了由零顺序优化攻击启发的算法,并与TextAtack框架的基准结果进行比较。令人惊讶的是,我们发现,基于优化的方法在限制的设置方面没有带来任何改进,仅在搜索空间较大的不受限制的设置中略微受益于粗略的梯度信息。相比之下,简单的惯性利用近邻而不询问目标功能,在受限制的设置中取得了显著的成功率,在不受限制的设置中几乎完全成功率,在数量上较少的查询。我们从这些结果中得出结论,目前的TextAtack基准任务过于容易,限制太严格,无法对黑盒对抗文本攻击进行有意义的研究。

0
下载
关闭预览

相关内容

【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
专知会员服务
44+阅读 · 2020年10月31日
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
40+阅读 · 2020年7月23日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Interpretable Adversarial Training for Text
Arxiv
5+阅读 · 2019年5月30日
Arxiv
7+阅读 · 2018年6月8日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Top
微信扫码咨询专知VIP会员