Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) is widely used to complement ultrasound examinations and x-ray mammography during the early detection and diagnosis of breast cancer. However, images generated by various MRI scanners (e.g. GE Healthcare vs Siemens) differ both in intensity and noise distribution, preventing algorithms trained on MRIs from one scanner to generalize to data from other scanners successfully. We propose a method for image normalization to solve this problem. MRI normalization is challenging because it requires both normalizing intensity values and mapping between the noise distributions of different scanners. We utilize a cycle-consistent generative adversarial network to learn a bidirectional mapping between MRIs produced by GE Healthcare and Siemens scanners. This allows us learning the mapping between two different scanner types without matched data, which is not commonly available. To ensure the preservation of breast shape and structures within the breast, we propose two technical innovations. First, we incorporate a mutual information loss with the CycleGAN architecture to ensure that the structure of the breast is maintained. Second, we propose a modified discriminator architecture which utilizes a smaller field-of-view to ensure the preservation of finer details in the breast tissue. Quantitative and qualitative evaluations show that the second proposed method was able to consistently preserve a high level of detail in the breast structure while also performing the proper intensity normalization and noise mapping. Our results demonstrate that the proposed model can successfully learn a bidirectional mapping between MRIs produced by different vendors, potentially enabling improved accuracy of downstream computational algorithms for diagnosis and detection of breast cancer. All the data used in this study are publicly available.


翻译:增强磁共振成像(DCE-MRI)被广泛用于在乳腺癌早期检测和诊断期间补充超声检查和X光乳房X光乳房X光乳房X光检查,但是,各种磁共振扫描仪(例如GE Healcare vs Siemens)产生的图像在强度和噪音分布上各不相同,防止通过一个扫描器对MRIs进行培训的算法进行概括,以便成功地将其他扫描仪的数据推广到其他扫描仪的数据。我们建议采用一种使图像正常化的方法解决这一问题。MRI正常化具有挑战性,因为它需要使强度值正常化,并在不同扫描仪的噪音分布间进行测绘。我们使用循环一致的基调基调网来学习由GE Healthcare和Siemens扫描机制作的MMSIs之间的双向导图。这使我们得以学习两种不同的扫描机类型之间的测图,而这些数据并不普遍可用。为了确保乳型形状和结构的保存,我们建议采用两种技术创新。首先,我们将所有信息损失与CyGAN架构纳入确保乳腺癌结构结构结构结构结构结构结构结构结构保持这一结构的精确结构。我们提议在正常的深度中进行精确的保存。第二层中,我们提议采用一个不断分析结构结构结构,然后用一个不断修改结构结构来显示结构,以显示一个稳定的结构,以显示一个持续的升级式的升级式结构,以显示一个持续式的升级式的精确性结构,以显示一个持续式结构,以显示一种结构。

0
下载
关闭预览

相关内容

生成对抗网络GAN在各领域应用研究进展(中文版),37页pdf
专知会员服务
151+阅读 · 2020年12月30日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
70+阅读 · 2020年10月24日
生成对抗网络GAN的发展与最新应用
专知会员服务
127+阅读 · 2020年8月13日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
203+阅读 · 2019年9月30日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2018年5月21日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
Top
微信扫码咨询专知VIP会员