This paper proposes a novel acoustic word embedding called Acoustic Neighbor Embeddings where speech or text of arbitrary length are mapped to a vector space of fixed, reduced dimensions by adapting stochastic neighbor embedding (SNE) to sequential inputs. The Euclidean distance between coordinates in the embedding space reflects the phonetic confusability between their corresponding sequences. Two encoder neural networks are trained: an acoustic encoder that accepts speech signals in the form of frame-wise subword posterior probabilities obtained from an acoustic model and a text encoder that accepts text in the form of subword transcriptions. Compared to a triplet loss criterion, the proposed method is shown to have more effective gradients for neural network training. Experimentally, it also gives more accurate results with low-dimensional embeddings when the two encoder networks are used in tandem in a word (name) recognition task, and when the text encoder network is used standalone in an approximate phonetic matching task. In particular, in an isolated name recognition task depending solely on Euclidean nearest-neighbor search between the proposed embedding vectors, the recognition accuracy is identical to that of conventional finite state transducer(FST)-based decoding using test data with up to 1 million names in the vocabulary and 40 dimensions in the embeddings.
翻译:本文建议使用一个新的声音字词嵌入一个叫做“声学邻居”的隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐,将语言或任意长度的文字映射到固定的、缩小维度的矢量空间中。 嵌入空间坐标之间的欧clidean距离反映了其对应序列之间的音解混。 两个编码神经网络经过培训: 一个接受语音编码器, 接受语言信号, 其形式为框架- 子词小词后继隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐, 与三重损失标准相比, 提议的方法将具有更有效的渐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐, 且在Eucliclo-Cli-Slidal-Fldal-Istlegle