We construct locally decodable codes (LDCs) to correct insertion-deletion errors in the setting where the sender and receiver share a secret key or where the channel is resource-bounded. Our constructions rely on a so-called "Hamming-to-InsDel" compiler (Ostrovsky and Paskin-Cherniavsky, ITS '15 & Block et al., FSTTCS '20), which compiles any locally decodable Hamming code into a locally decodable code resilient to insertion-deletion (InsDel) errors. While the compilers were designed for the classical coding setting, we show that the compilers still work in a secret key or resource-bounded setting. Applying our results to the private key Hamming LDC of Ostrovsky, Pandey, and Sahai (ICALP '07), we obtain a private key InsDel LDC with constant rate and polylogarithmic locality. Applying our results to the construction of Blocki, Kulkarni, and Zhou (ITC '20), we obtain similar results for resource-bounded channels; i.e., a channel where computation is constrained by resources such as space or time.


翻译:我们在发送者和接收者共享秘密密钥或频道受资源约束的设置中建立本地可下载代码(LDC),以纠正在发送者和接收者共享秘密密钥或频道受资源约束的设置中插入删除错误。我们的构造依赖于所谓的“Hamming-InsDel”编译器(Ostrovsky和Paskin-Cherniavsky,ITS '15 & Block等人,FSTTCS '20),该代码将任何本地可下载的含汞代码编译成一个适合插入删除错误的本地可下载代码。虽然编译器是为经典编码设置设计的,但我们显示编译者仍然在一个秘密密钥或受资源约束的设置中工作。将我们的成果应用到Ostrovsky、Pandey和Sahai的私人密钥Hamming最不发达国家(ICCAP '07),我们得到了一个具有恒定速率率和多logy位置的InsDel最不发达国家的私人密钥。将我们的结果应用到布基、Kulkarni和Zhou(IT20)的构建中,但我们获得类似的时间将空间用于这样的频道。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员