Let $\{Z_{1,n} , n\geq 0\}$ and $\{Z_{2,n}, n\geq 0\}$ be two supercritical branching processes in different random environments, with criticality parameters $\mu_1$ and $\mu_2$ respectively. It is known that $\frac{1}{n} \ln Z_{1,n} \rightarrow \mu_1$ and $\frac{1}{m} \ln Z_{2,m} \rightarrow \mu_2$ in probability as $m, n \rightarrow \infty.$ In this paper, we are interested in the comparison on the two criticality parameters. To this end, we prove a non-uniform Berry-Esseen's bound and Cram\'{e}r's moderate deviations for $\frac{1}{n} \ln Z_{1,n} - \frac{1}{m} \ln Z_{2,m}$ as $m, n \rightarrow \infty.$ An application is also given for constructing confidence interval for $\mu_1-\mu_2$.
翻译:$1,n}, n\q 0 $, n\q 0 $ 和 $2, n}, n\q 0 $, 是不同随机环境中的两个超临界分支进程, 关键度参数分别为 mu_ 1美元 和 mu_ 2美元。 众所周知, $\ frac{ 1, n}\ frac{ 1, n}\ fraightrow\ 1 美元 和 $\ lac{ 1, n} = $2, m} -\ frantror \ mu_ 2美元, 概率为 $m, n\ rightrowr\ infty $。 在本文中, 我们有兴趣比较两个关键度参数。 为此, 我们证明 Berry- Esseen 的界限和 Cram\\ { e} 的中度偏差是 $1, n} -\\\\\\\\\\ \ \ \ \ \ \ \ \ \\\\\\\ im_ 应用程序也是用于构建 rodeseum 的置信 。