Solving the Schr\"odinger equation is key to many quantum mechanical properties. However, an analytical solution is only tractable for single-electron systems. Recently, neural networks succeeded at modelling wave functions of many-electron systems. Together with the variational Monte-Carlo (VMC) framework, this led to solutions on par with the best known classical methods. Still, these neural methods require tremendous amounts of computational resources as one has to train a separate model for each molecular geometry. In this work, we combine a Graph Neural Network (GNN) with a neural wave function to simultaneously solve the Schr\"odinger equation for multiple geometries via VMC. This enables us to model continuous subsets of the potential energy surface with a single training pass. Compared to existing state-of-the-art networks, our Potential Energy Surface Network (PESNet) speeds up training for multiple geometries by up to 40 times while matching or surpassing their accuracy. This may open the path to accurate and orders of magnitude cheaper quantum mechanical calculations.
翻译:解决Schr\'odinger 方程式是许多量子机械特性的关键。 然而, 分析解决方案只能用于单电子系统。 最近, 神经网络成功地模拟了多个电子系统的波函数。 与变异蒙特卡洛( VMC) 框架一起, 这导致了与最已知的经典方法相同的解决方案。 然而, 这些神经方法需要大量的计算资源, 因为需要为每个分子的几何学训练一个单独的模型。 在这项工作中, 我们将一个图形神经网络( GNNN) 与一个神经波函数结合起来, 以同时解决通过 VMC 的多个地貌的Schr\'oder 方程式。 这使我们能够用一个单一的培训通道来模拟潜在能源表面的连续子集。 与现有状态的经典网络相比, 我们潜在的能源地面网络( PESNet) 加快了多个地貌的训练速度, 最多40 次, 同时匹配或超过其精确度。 这可能会打开一条路径, 以更廉价的量子机械计算速度的路径 。