In this contribution we study the formal ability of a multiresolution lattice Boltzmann scheme to approximate isothermal and thermal compressible Navier Stokes equations with a single particle distribution. More precisely, we consider a total of 12 classical square lattice Boltzmann schemes with prescribed sets of conserved and nonconserved moments. The question is to determine the algebraic expressions of the equilibrium functions for the nonconserved moments and the relaxation parameters associated to each scheme. We compare the fluid equations and the result of the Taylor expansion method at second order accuracy for bidimensional examples with a maximum of 17 velocities and three-dimensional schemes withat most 33 velocities. In some cases, it is not possible to fit exactly the physical model. For several examples, we adjust the Navier-Stokes equations and propose nontrivial expressions for the equilibria.
翻译:在这一贡献中,我们研究了多分辨率拉蒂斯·博尔茨曼计划以单一粒子分布接近异热和热压缩纳维埃·斯托克斯方程式的正式能力。更准确地说,我们考虑总共12个古典平方拉蒂斯·博尔茨曼计划,规定有节制和无节制的时刻。问题在于确定非节制时刻平衡功能的代数表达方式和与每个计划相关的放松参数。我们将二维示例的流方程式和泰勒扩展方法的结果在第二顺序精确度上与最多17个速度和三维计划相比较,最多有33个速度。在某些情况下,不可能完全适合物理模型。就几个例子而言,我们调整纳维尔-斯托克斯方程式的代数,并为平衡公式提出非三维表达方式。