Missing values constitute an important challenge in real-world machine learning for both prediction and causal discovery tasks. However, existing imputation methods are agnostic to causality, while only few methods in traditional causal discovery can handle missing data in an efficient way. In this work we propose VICause, a novel approach to simultaneously tackle missing value imputation and causal discovery efficiently with deep learning. Particularly, we propose a generative model with a structured latent space and a graph neural network-based architecture, scaling to large number of variables. Moreover, our method can discover relationships between groups of variables which is useful in many real-world applications. VICause shows improved performance compared to popular and recent approaches in both missing value imputation and causal discovery.


翻译:缺失的值是真实世界机器学习预测和因果发现任务的一个重要挑战。 但是,现有的估算方法对因果关系具有不可知性,而传统因果发现中只有很少的方法能够有效地处理缺失的数据。 在这项工作中,我们提议了一种新颖的方法,即与深层学习同时有效处理缺失的值估算和因果发现。特别是,我们提出了一个具有结构化潜在空间的基因化模型和一个基于图表神经网络的架构,将范围扩大到大量变量。此外,我们的方法可以发现在很多现实世界应用中有用的各种变量之间的关系。 与常见和近期方法相比,在缺失的值估算和因果发现方面表现有所改善。

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
专知会员服务
50+阅读 · 2021年8月8日
专知会员服务
42+阅读 · 2020年12月18日
Python图像处理,366页pdf,Image Operators Image Processing in Python
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
5+阅读 · 2018年6月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月7日
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
Arxiv
4+阅读 · 2020年3月19日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2021年8月8日
专知会员服务
42+阅读 · 2020年12月18日
Python图像处理,366页pdf,Image Operators Image Processing in Python
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
5+阅读 · 2018年6月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员