Causal discovery aims to learn a causal graph from observational data. To date, most causal discovery methods require data to be stored in a central server. However, data owners gradually refuse to share their personalized data to avoid privacy leakage, making this task more troublesome by cutting off the first step. A puzzle arises: $\textit{how do we infer causal relations from decentralized data?}$ In this paper, with the additive noise model assumption of data, we take the first step in developing a gradient-based learning framework named DAG-Shared Federated Causal Discovery (DS-FCD), which can learn the causal graph without directly touching local data and naturally handle the data heterogeneity. DS-FCD benefits from a two-level structure of each local model. The first level learns the causal graph and communicates with the server to get model information from other clients, while the second level approximates causal mechanisms and personally updates from its own data to accommodate the data heterogeneity. Moreover, DS-FCD formulates the overall learning task as a continuous optimization problem by taking advantage of an equality acyclicity constraint, which can be naturally solved by gradient descent methods. Extensive experiments on both synthetic and real-world datasets verify the efficacy of the proposed method.


翻译:原因发现的目的是从观测数据中学习因果图表。 到目前为止,大多数因果发现方法都要求将数据存储在中央服务器中。 然而,数据所有者逐渐拒绝分享个人化数据以避免隐私泄漏,从而通过切断第一步而使这项任务更加麻烦。 出现一个问题: $\ textit{ how do we set explect incains relation from droital data?}} 在本文中,在数据添加噪声模型假设中,我们迈出了第一步,开发了一个基于梯度的学习框架,名为DAG-Shared Fled Causal Discovery(DS-FCD),它可以在不直接接触当地数据的情况下学习因果图,并自然处理数据异性。 DS-FCD从每个本地模型的两层结构中受益。 第一层是因果图表,并与服务器沟通,以便从其他客户获取模型信息,而第二层则是因果机制和个人数据更新,以适应数据繁杂性。 此外,DS-FCD将总体学习任务编成一个持续优化的问题,利用全球平等性、高度验证方法解决了真实的合成周期的基化数据。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
53+阅读 · 2020年10月11日
因果关联学习,Causal Relational Learning
专知会员服务
179+阅读 · 2020年4月21日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2022年2月4日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
4+阅读 · 2020年3月19日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
53+阅读 · 2020年10月11日
因果关联学习,Causal Relational Learning
专知会员服务
179+阅读 · 2020年4月21日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员