A new algorithmic framework is presented for holographic phase retrieval via maximum likelihood optimization, which allows for practical and robust image reconstruction. This framework is especially well-suited for holographic coherent diffraction imaging in the \textit{low-photon regime}, where data is highly corrupted by Poisson shot noise. Thus, this methodology provides a viable solution towards the advent of \textit{low-photon nanoscale imaging}, which is a fundamental challenge facing the current state of imaging technologies. Practical optimization algorithms are derived and implemented, and extensive numerical simulations demonstrate significantly improved image reconstruction versus the leading algorithms currently in use. Further experiments compare the performance of popular holographic reference geometries to determine the optimal combined physical setup and algorithm pipeline for practical implementation. Additional features of these methods are also demonstrated, which allow for fewer experimental constraints.
翻译:为通过最大可能性优化全息阶段检索提供了一个新的算法框架,允许进行实际和稳健的图像重建。这个框架特别适合\ textit{low-photon system} 中的全息连贯的折射成像,因为普瓦松射线噪音严重损坏了数据。因此,这个方法为出现\ textit{low-phton namscale imfication}提供了可行的解决办法,这是目前成像技术面临的一个基本挑战。 实际优化算法的产生和实施,广泛的数字模拟表明图像重建与目前使用的主要算法相比有了显著改善。 进一步实验比较了流行的全息参照地理图谱的性能,以确定最佳的组合物理设置和算法管道,以便实际实施。 这些方法的其他特点也得到了证明,从而减少了实验限制。