A new algorithmic framework is presented for holographic phase retrieval via maximum likelihood optimization, which allows for practical and robust image reconstruction. This framework is especially well-suited for holographic coherent diffraction imaging in the \textit{low-photon regime}, where data is highly corrupted by Poisson shot noise. Thus, this methodology provides a viable solution towards the advent of \textit{low-photon nanoscale imaging}, which is a fundamental challenge facing the current state of imaging technologies. Practical optimization algorithms are derived and implemented, and extensive numerical simulations demonstrate significantly improved image reconstruction versus the leading algorithms currently in use. Further experiments compare the performance of popular holographic reference geometries to determine the optimal combined physical setup and algorithm pipeline for practical implementation. Additional features of these methods are also demonstrated, which allow for fewer experimental constraints.


翻译:为通过最大可能性优化全息阶段检索提供了一个新的算法框架,允许进行实际和稳健的图像重建。这个框架特别适合\ textit{low-photon system} 中的全息连贯的折射成像,因为普瓦松射线噪音严重损坏了数据。因此,这个方法为出现\ textit{low-phton namscale imfication}提供了可行的解决办法,这是目前成像技术面临的一个基本挑战。 实际优化算法的产生和实施,广泛的数字模拟表明图像重建与目前使用的主要算法相比有了显著改善。 进一步实验比较了流行的全息参照地理图谱的性能,以确定最佳的组合物理设置和算法管道,以便实际实施。 这些方法的其他特点也得到了证明,从而减少了实验限制。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
57+阅读 · 2019年11月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Paraphrase Generation with Deep Reinforcement Learning
Few Shot Learning with Simplex
Arxiv
5+阅读 · 2018年7月27日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员