We report a workflow and the output of a natural language processing (NLP)-based procedure to mine the extant metal-organic framework (MOF) literature describing structurally characterized MOFs and their solvent removal and thermal stabilities. We obtain over 2,000 solvent removal stability measures from text mining and 3,000 thermal decomposition temperatures from thermogravimetric analysis data. We assess the validity of our NLP methods and the accuracy of our extracted data by comparing to a hand-labeled subset. Machine learning (ML, i.e. artificial neural network) models trained on this data using graph- and pore-geometry-based representations enable prediction of stability on new MOFs with quantified uncertainty. Our web interface, MOFSimplify, provides users access to our curated data and enables them to harness that data for predictions on new MOFs. MOFSimplify also encourages community feedback on existing data and on ML model predictions for community-based active learning for improved MOF stability models.
翻译:我们报告了一个基于自然语言处理(NLP)的程序的工作流程和产出,用于开采现有金属-有机框架(MOF)文献,描述结构特征的MOF及其溶剂去除和热稳定。我们从文本开采中获得了2,000多项溶剂去除稳定性措施,从温度测量分析数据中获得3,000个热分解温度。我们通过比较手标子来评估我们的NLP方法的有效性和我们提取数据的准确性。利用图形和孔地测量法的表示法(ML,即人工神经网络)对这些数据进行了培训,从而能够预测具有量化不确定性的新MOF的稳定性。我们的网络界面“MFSimplifri化”为用户提供了访问我们所整理的数据的途径,并使他们能够利用这些数据预测新的MOF。MOFSimplifil化还鼓励社区对现有数据和ML模型的反馈,以便社区积极学习改进MOF稳定性模型。