Few-Shot Sequence Labeling (FSSL) is a canonical solution for the tagging models to generalize on an emerging, resource-scarce domain. In this paper, we propose ESD, an Enhanced Span-based Decomposition method, which follows the metric-based meta-learning paradigm for FSSL. ESD improves previous methods from two perspectives: a) Introducing an optimal span decomposition framework. We formulate FSSL as an optimization problem that seeks for an optimal span matching between test query and supporting instances. During inference, we propose a post-processing algorithm to alleviate false positive labeling by resolving span conflicts. b) Enhancing representation for spans and class prototypes. We refine span representation by inter- and cross-span attention, and obtain the class prototypical representation with multi-instance learning. To avoid the semantic drift when representing the O-type (not a specific entity or slot) prototypes, we divide the O-type spans into three categories according to their boundary information. ESD outperforms previous methods in two popular FSSL benchmarks, FewNERD and SNIPS, and is proven to be more robust in the nested and noisy tagging scenarios.
翻译:少微偏序标签标签( FSSL) 是用来对新兴资源侵蚀域进行概括化的标记模型的简单化解决方案 。 在本文中, 我们提议了 ESD, 即强化的 Span 分解法, 遵循FSSL 的基于标准的元学习模式。 ESD 从两个角度改进了先前的方法 : a) 引入一个最佳的跨分解框架 。 我们将 FSSL 作为一种优化问题, 寻求将测试查询与支持实例相匹配的最佳范围。 在推断中, 我们提出后处理算法, 通过解决跨区域冲突来减轻错误的正面标签 。 b) 加强跨区域和类原型的代表性 。 我们通过跨区域和跨范围关注来改进代表性, 并获得类类的准代表, 并学习多内容 。 为了避免代表O型( 不是特定实体或地点) 原型时的语义流, 我们根据边界信息将O型的跨度分成三类。 ESD 超越先前方法, 在两个流行的FSLSL基准基准中, 和高频和高频和高频模型中, 和高频和高频的SPSPSPSPSB, 被验证。