Few-Shot Sequence Labeling (FSSL) is a canonical solution for the tagging models to generalize on an emerging, resource-scarce domain. In this paper, we propose ESD, an Enhanced Span-based Decomposition method, which follows the metric-based meta-learning paradigm for FSSL. ESD improves previous methods from two perspectives: a) Introducing an optimal span decomposition framework. We formulate FSSL as an optimization problem that seeks for an optimal span matching between test query and supporting instances. During inference, we propose a post-processing algorithm to alleviate false positive labeling by resolving span conflicts. b) Enhancing representation for spans and class prototypes. We refine span representation by inter- and cross-span attention, and obtain the class prototypical representation with multi-instance learning. To avoid the semantic drift when representing the O-type (not a specific entity or slot) prototypes, we divide the O-type spans into three categories according to their boundary information. ESD outperforms previous methods in two popular FSSL benchmarks, FewNERD and SNIPS, and is proven to be more robust in the nested and noisy tagging scenarios.


翻译:少微偏序标签标签( FSSL) 是用来对新兴资源侵蚀域进行概括化的标记模型的简单化解决方案 。 在本文中, 我们提议了 ESD, 即强化的 Span 分解法, 遵循FSSL 的基于标准的元学习模式。 ESD 从两个角度改进了先前的方法 : a) 引入一个最佳的跨分解框架 。 我们将 FSSL 作为一种优化问题, 寻求将测试查询与支持实例相匹配的最佳范围。 在推断中, 我们提出后处理算法, 通过解决跨区域冲突来减轻错误的正面标签 。 b) 加强跨区域和类原型的代表性 。 我们通过跨区域和跨范围关注来改进代表性, 并获得类类的准代表, 并学习多内容 。 为了避免代表O型( 不是特定实体或地点) 原型时的语义流, 我们根据边界信息将O型的跨度分成三类。 ESD 超越先前方法, 在两个流行的FSLSL基准基准中, 和高频和高频和高频模型中, 和高频和高频的SPSPSPSPSB, 被验证。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
124+阅读 · 2020年9月8日
ACL2020接受论文列表公布,571篇长文208篇短文
专知会员服务
67+阅读 · 2020年5月19日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
“CVPR 2020 接受论文列表 1470篇论文都在这了
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Arxiv
0+阅读 · 2021年11月18日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
124+阅读 · 2020年9月8日
ACL2020接受论文列表公布,571篇长文208篇短文
专知会员服务
67+阅读 · 2020年5月19日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员