Using the local geometrical properties of a given zero-dimensional square multivariate nonlinear system inside a box, we provide a simple but effective and new criterion for the uniqueness and the existence of a real simple zero of the system inside the box. Based on the result, we design an algorithm based on subdivision and interval arithmetics to isolate all the real zeros of a general real nonlinear system inside a given box. Our method is complete for systems with only finite isolated simple real zeros inside a box. A termination precision is given for general zero-dimensional systems. Multiple zeros of the system are output in bounded boxes. A variety of benchmarks show the effectivity and efficiency of our implementation (in C++). It works for polynomial systems with Bezout bound more than 100 million. It also works for non-polynomial nonlinear systems. We also discuss the limitations of our method.
翻译:使用一个框内给定零维平方多变量非线性系统的局部几何特性,我们为盒内系统的独特性和实际简单零点的存在提供了简单但有效的新标准。根据结果,我们设计了一个基于分区和间距算算法的算法,分离一个框内一般非线性系统的所有实际零点。我们的方法对盒子内只有有限孤立的简单实际零点的系统是完全的。给一般零维系统给出了终止精确度。系统多零点是在捆绑框内输出的。各种基准显示我们执行(在C+++中)的效果和效率。它适用于有超过1亿贝祖特的多元系统。它也适用于非极性非线性系统。我们还讨论了我们方法的局限性。