We adapt behavioral models developed for predicting human behavior to the task of value estimation. While the traditional approach in the literature is to model non-strategic agents as uniform randomizers, thus treating their behavior as noise, we argue that a rich non-strategic model is better for value estimation. We introduce quantal-linear4, a rich non-strategic model component, and conduct online experiments that demonstrate that integrating strategic models with this non-strategic model improves both prediction of behavior and inference of values compared to more traditional best response models, with Nash equilibrium being the worst at both inference and prediction. We also propose a framework to augment the standard quantal response equilibrium (QRE) with a non-strategic component we call QRE+L0 and find an improvement in value estimation over a standard quantal response equilibrium.
翻译:我们调整了为预测人类行为而开发的行为模型以适应价值估计任务。 文献的传统方法是将非战略物剂模拟为统一的随机化器,从而将它们的行为作为噪音处理,但我们认为,丰富的非战略性模型更适合价值估计。 我们引入了四环线4, 丰富的非战略性模型组成部分,并进行在线实验,表明将战略模型与这一非战略模型结合起来,可以改善对行为的预测和价值的推断,而与更传统的最佳反应模型相比,纳什平衡在推论和预测两方面都是最差的。 我们还提出了一个框架,用我们称之为QRE+L0的非战略组成部分来增强标准二次反应平衡(QRE),并在标准的二次反应平衡中找到价值估计的改进。