We analyze a numerical method to solve the time-dependent linear Pauli equation in three space dimensions. The Pauli equation is a semi-relativistic generalization of the Schr\"odinger equation for 2-spinors which accounts both for magnetic fields and for spin, with the latter missing in preceding numerical work on the linear magnetic Schr\"odinger equation. We use a four operator splitting in time, prove stability and convergence of the method and derive error estimates as well as meshing strategies for the case of given time-independent electromagnetic potentials, thus providing a generalization of previous results for the magnetic Schr\"odinger equation.
翻译:我们分析了一种求解三维线性Pauli方程的数值方法。Pauli方程是2自旋子体系中考虑磁场和自旋的半相对论广义Schr\"odinger方程。该方法在先前的线性磁Schr\"odinger方程的数值计算中缺少自旋考虑。我们使用时间上的四个算子分裂,证明了方法的稳定性和收敛性,并针对给定的时间独立电磁势场导出误差估计和网格策略,从而提供了线性磁Schr\"odinger方程的先前结果的一般化。