LP-duality theory has played a central role in the study of the core, right from its early days to the present time. However, despite the extensive nature of this work, basic gaps still remain. We address these gaps using the following building blocks from LP-duality theory: 1. Total unimodularity (TUM). 2. Complementary slackness conditions and strict complementarity. Our exploration of TUM leads to defining new games, characterizing their cores and giving novel ways of using core imputations to enforce constraints that arise naturally in applications of these games. The latter include: 1. Efficient algorithms for finding min-max fair, max-min fair and equitable core imputations. 2. Encouraging diversity and avoiding over-representation in a generalization of the assignment game. Complementarity enables us to prove new properties of core imputations of the assignment game and its generalizations.


翻译:LP-质量理论在核心研究中发挥了中心作用,从早期到现在,尽管这项工作具有广泛性质,但基本差距仍然存在。我们利用LP-质量理论的以下组成部分来弥补这些差距:1. 完全单一性(TUM)。2. 补充性松懈条件和严格的互补性。我们对TUM的探索导致定义新的游戏,确定核心核心特征,并提供新的方法,利用核心估算来实施这些游戏应用中自然产生的限制。后者包括:1. 找到微量最大公平、最大公平和公平的核心估算的有效算法。2. 鼓励多样性,避免在任务游戏的一般化中出现过多的代表性。互补使我们能够证明任务游戏及其一般化的核心估算的新性质。</s>

0
下载
关闭预览

相关内容

慕尼黑工业大学(Technische Universität München),位于拜仁州(Bayern)首府慕尼黑(München),是德国拜仁州唯一的一所理工类大学。在校生约38000人,是德国最大的理工高校之一。属于德国理工九所(TU9)、精英大学(Eliteuniversitäten),是国际上声名显赫的顶尖德国院校。 校内设有154个专业,核心领域为自然科学、工程科学、医学及生命科学。此外还设有经济学、数学与信息学、体育与健康科学、教育学及建筑学专业。
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
70+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
53+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
93+阅读 · 2021年5月17日
VIP会员
相关VIP内容
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
70+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
53+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员