Clinical investigations of anatomy's structural changes over time could greatly benefit from population-level quantification of shape, or spatiotemporal statistic shape modeling (SSM). Such a tool enables characterizing patient organ cycles or disease progression in relation to a cohort of interest. Constructing shape models requires establishing a quantitative shape representation (e.g., corresponding landmarks). Particle-based shape modeling (PSM) is a data-driven SSM approach that captures population-level shape variations by optimizing landmark placement. However, it assumes cross-sectional study designs and hence has limited statistical power in representing shape changes over time. Existing methods for modeling spatiotemporal or longitudinal shape changes require predefined shape atlases and pre-built shape models that are typically constructed cross-sectionally. This paper proposes a data-driven approach inspired by the PSM method to learn population-level spatiotemporal shape changes directly from shape data. We introduce a novel SSM optimization scheme that produces landmarks that are in correspondence both across the population (inter-subject) and across time-series (intra-subject). We apply the proposed method to 4D cardiac data from atrial-fibrillation patients and demonstrate its efficacy in representing the dynamic change of the left atrium. Furthermore, we show that our method outperforms an image-based approach for spatiotemporal SSM with respect to a generative time-series model, the Linear Dynamical System (LDS). LDS fit using a spatiotemporal shape model optimized via our approach provides better generalization and specificity, indicating it accurately captures the underlying time-dependency.
翻译:对剖腹产结构变化的临床调查可以极大地受益于对形状或时空统计形状模型(SSSM)进行人口层面的量化分析。这种工具可以使病人器官周期或疾病在与兴趣组群相比的进化特征化。构建形状模型需要建立定量形状代表(例如相应的里程碑)。基于粒子的形状模型(PSM)是一种由数据驱动的SSSM方法,通过优化里程碑定位来捕捉人口层次形状的变化。然而,它假定了跨区际研究设计,因此代表形状随时间变化的统计力量有限。现有的Spateom或长度形状变化模型的建模方法需要预定义的形状表和先成型形状模型,通常是跨区构建的。本文提出了一种由PSM方法启发的数据驱动的方法,以直接从形状数据中学习人口层次的波腹形形状变化。我们引入了一个新的SSSSMSM模型优化模型计划,它产生与整个人口(跨区)和跨时序(内部)对应的标志。我们用SBRialalal-SDSDSMS-S-roalal-roalalalalalalalalalal-salalalal-Smalviolvilation 和Smax 演示我们用了一种动态系统的系统显示的系统图,我们向左向左表展示了一种显示了一种方法。我们向左方方法。我们向左表展示了一种方法。我们展示了一种向左向左方向展示了一种方法。