Linear-time pattern matching engines have seen promising results using Finite Automata (FA) as their computation model. Among different FA variants, deterministic (DFA) and non-deterministic (NFA) are the most commonly used computation models for FA-based pattern matching engines. Moreover, NFA is the prevalent model in pattern matching engines on spatial architectures. The reasons are: i) DFA size, as in #states, can be exponential compared to equivalent NFA, ii) DFA cannot exploit the massive parallelism available on spatial architectures. This paper performs an empirical study on the #state of minimized DFA and optimized NFA across a diverse set of real-world benchmarks and shows that if distinct DFAs are generated for distinct patterns, #states of minimized DFA are typically equal to their equivalent optimized NFA. However, NFA is more robust in maintaining the low #states for some benchmarks. Thus, the choice of NFA vs. DFA for spatial architecture is less important than the need to generate distinct DFAs for each pattern and support these distinct DFAs' parallel processing. Finally, this paper presents a throughput study for von Neumann's architecture-based (CPU) vs. spatial architecture-based (FPGA) automata processing engines. The study shows that, based on the workload, neither CPU-based automata processing engine nor FPGA-based automata processing engine is the clear winner. If #patterns matched per workload increases, the CPU-based automata processing engine's throughput decreases. On the other hand, the FPGA-based automata processing engine lacks the memory spilling option; hence, it fails to accommodate an entire automata if it does not fit into FPGA's logic fabric. In the best-case scenario, the CPU has a 4.5x speedup over the FPGA, while for some benchmarks, the FPGA has a 32,530x speedup over the CPU.


翻译:使用 Finite Automata (FA) 进行线上模式匹配的引擎,其结果很有希望。 在不同的 FA 变量中, 确定性(DFA) 和非确定性(NFA) 是FA 模式匹配引擎最常用的计算模型。 此外, NFA 是空间架构中模式匹配引擎的常用模型。 原因是 i) DFA 与 # States 相比, DFA 的大小可以指数化, 与 NFA 相当, ii) DFA 无法利用空间架构中现有的大规模平行关系。 本文对“ 非确定性(DFA) 状态进行实证性研究, 在一个不同的实体世界基准中, 优化的自动确定性(DFA ) 优化的 NFA 模式, 显示不同的 DFA 格式处理模式。 最后, # DFA 通常等同于最佳的 NFA。 但是, NFA 以低 状态维持某些基准的“ ” 状态。 因此, 以 NFA 基础的 DFA 为空间结构选择, 并不重要, 而不是基于基于空间结构, 比需要产生明确的 DFA,, 以每个模式产生不同的 DFA, 并支持 并支持这些格式处理。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Arxiv
0+阅读 · 2022年12月1日
Arxiv
45+阅读 · 2022年9月19日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员