We propose a continuous normalizing flow for sampling from the high-dimensional probability distributions of Quantum Field Theories in Physics. In contrast to the deep architectures used so far for this task, our proposal is based on a shallow design and incorporates the symmetries of the problem. We test our model on the $\phi^4$ theory, showing that it systematically outperforms a realNVP baseline in sampling efficiency, with the difference between the two increasing for larger lattices. On the largest lattice we consider, of size $32\times 32$, we improve a key metric, the effective sample size, from 1% to 66% w.r.t. the realNVP baseline.
翻译:我们建议对物理中量子场理论的高度概率分布进行连续的正常化取样。 与迄今为止用于这一任务的深层结构相比, 我们的提案以浅度设计为基础, 并包含问题的对称性。 我们用美元4美元的理论测试我们的模型, 表明它在取样效率方面系统地优于真实的NVP基准, 两者之间的差异在较大的拉特基值上呈增长趋势。 我们认为, 最大的拉特基值为32美元, 我们改进了一个关键指标, 有效的样本规模, 从1% 到66% w.r.t. real NVP基线。