Finding an envy-free allocation of indivisible resources to agents is a central task in many multiagent systems. Often, non-trivial envy-free allocations do not exist, and, when they do, finding them can be computationally hard. Classical envy-freeness requires that every agent likes the resources allocated to it at least as much as the resources allocated to any other agent. In many situations this assumption can be relaxed since agents often do not even know each other. We enrich the envy-freeness concept by taking into account (directed) social networks of the agents. Thus, we require that every agent likes its own allocation at least as much as those of all its (out)neighbors. This leads to a "more local" concept of envy-freeness. We also consider a "strong" variant where every agent must like its own allocation more than those of all its (out)neighbors. We analyze the classical and the parameterized complexity of finding allocations that are complete and, at the same time, envy-free with respect to one of the variants of our new concept. To this end, we study different restrictions of the agents' preferences and of the social network structure. We identify cases that become easier (from $\Sigma^\textrm{p}_2$-hard or NP-hard to polynomial-time solvability) and cases that become harder (from polynomial-time solvability to NP-hard) when comparing classical envy-freeness with our graph envy-freeness. Furthermore, we spot cases where graph envy-freeness is easier to decide than strong graph envy-freeness, and vice versa. On the route to one of our fixed-parameter tractability results, we also establish a connection to a directed and colored variant of the classical SUBGRAPH ISOMORPHISM problem, thereby extending a known fixed-parameter tractability result for the latter.
翻译:在许多多试剂系统中,为代理人寻找一个不可分割的资源的无忌妒分配是一个核心任务。 通常, 非三端的无忌妒分配并不存在, 当它们发现时, 就会发现它们具有计算能力。 经典的无忌妒要求每个代理人至少比分配给任何其他代理人的资源更喜欢分配给它的资源。 在许多情况下, 这一假设可以放松, 因为代理人往往甚至不互相了解。 我们考虑到( 直接的) 代理人的社会网络, 丰富了无嫉妒自由的概念。 因此, 我们要求每个代理人至少喜欢其自己的分配, 至少喜欢其所有( 外) 的无忌妒分配, 而当它们发现( ) 其( 外) 的无忌妒自由( ), 我们要求每个代理人至少喜欢自己的( ) 和所有( 内) 直线的( 外) 度分配, 当我们从更本地的直线( ) 直线( ) 直线( 直线( ) 直线( 直线) 直线( ) 直线( 直径) 直线( 直径( 直径) 直线) 直线( 直线) 直线( 直线) 直线) 直线( 直线) 直通) 直线( 直线) 直线( 直线) 直线( 直线) 直线) 直线) 直线( 直线) 直线) 直线) 直线) 直线( 直线) 直线) 直线) 直线( 直线) 直线) 直线) 直线( 直线) 直线) 直通) 直线( 直线(我们, 直线(我们(我们( 直通) 直通) 直通) 直通) 直通) 直通) 直通) 直通) 直通) 直通) 直通) 直通) 直通) 直通) 直通) 直通) 直通) 直线(直通) 直通) 直线(我们, 直线) 直线(直线) 直线(我们, 直通) 直通