Confused about renovating your space? Choosing the perfect color for your walls is always a challenging task. One does rounds of color consultation and several patch tests. This paper proposes an AI tool to pitch paint based on attributes of your room and other furniture, and visualize it on your walls. It makes the color selection process easy. It takes in images of a room, detects furniture objects using YOLO object detection. Once these objects have been detected, the tool picks out color of the object. Later this object specific information gets appended to the room attributes (room_type, room_size, preferred_tone, etc) and a deep neural net is trained to make predictions for color/texture/wallpaper for the walls. Finally, these predictions are visualized on the walls from the images provided. The idea is to take the knowledge of a color consultant and pitch colors that suit the walls and provide a good contrast with the furniture and harmonize with different colors in the room. Transfer learning for YOLO object detection from the COCO dataset was used as a starting point and the weights were later fine-tuned by training on additional images. The model was trained on 1000 records listing the room and furniture attributes, to predict colors. Given the room image, this method finds the best color scheme for the walls. These predictions are then visualized on the walls in the image using image segmentation. The results are visually appealing and automatically enhance the color look-and-feel.


翻译:重新装修您的空间? 选择您墙壁的完美颜色总是一项艰巨的任务 。 选择您墙壁的完美颜色总是一件艰巨的任务 。 一个人会做几轮颜色咨询和若干补丁测试 。 本文提出一个 AI 工具, 用来根据您房间和其他家具的属性进行油漆预测, 并在墙壁上进行视觉化 。 它让颜色选择过程很容易 。 它在房间图像中进行选择, 使用 YOLO 对象探测, 检测家具 。 一旦检测到这些对象, 工具会选择对象的颜色。 稍后, 这个工具会将特定对象的信息附加到房间的属性( room 类型、 房间大小、 首选的大小、 首选的 等) 。 一个深层的神经网会经过训练, 以对墙壁的颜色/ 进行预测。 最后, 这些预测会从所提供的图像的墙壁上进行视觉化 。 模型将一个颜色顾问和颜色颜色颜色颜色的颜色匹配 与室内不同颜色的颜色对比进行很好的对比 。 然后通过对房间的图像进行精细的训练, 将图像进行更精确的图像的图像分析 。 。 模型是用来绘制的模型 。 显示的模型的模型的模型 。 。 显示的模型的模型在墙上 。 。 。 。 。 的模型在视觉的模型的模型的模型是用来在视觉的 。 。 。 。 。

0
下载
关闭预览

相关内容

Effective.Modern.C++ 中英文版,334页pdf
专知会员服务
68+阅读 · 2020年11月4日
专知会员服务
110+阅读 · 2020年3月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
已删除
将门创投
3+阅读 · 2019年1月29日
【泡泡一分钟】RoomNet:端到端房屋布局估计
泡泡机器人SLAM
18+阅读 · 2018年12月4日
车辆目标检测
数据挖掘入门与实战
30+阅读 · 2018年3月30日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Arxiv
0+阅读 · 2021年5月7日
DPOD: Dense 6D Pose Object Detector in RGB images
Arxiv
5+阅读 · 2019年2月28日
Arxiv
7+阅读 · 2018年12月5日
Arxiv
9+阅读 · 2018年4月12日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2019年1月29日
【泡泡一分钟】RoomNet:端到端房屋布局估计
泡泡机器人SLAM
18+阅读 · 2018年12月4日
车辆目标检测
数据挖掘入门与实战
30+阅读 · 2018年3月30日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关论文
Arxiv
0+阅读 · 2021年5月7日
DPOD: Dense 6D Pose Object Detector in RGB images
Arxiv
5+阅读 · 2019年2月28日
Arxiv
7+阅读 · 2018年12月5日
Arxiv
9+阅读 · 2018年4月12日
Arxiv
7+阅读 · 2018年3月19日
Top
微信扫码咨询专知VIP会员