The following briefly discusses possible difficulties in communication with and control of an AGI (artificial general intelligence), building upon an explanation of The Fermi Paradox and preceding work on symbol emergence and artificial general intelligence. The latter suggests that to infer what someone means, an agent constructs a rationale for the observed behaviour of others. Communication then requires two agents labour under similar compulsions and have similar experiences (construct similar solutions to similar tasks). Any non-human intelligence may construct solutions such that any rationale for their behaviour (and thus the meaning of their signals) is outside the scope of what a human is inclined to notice or comprehend. Further, the more compressed a signal, the closer it will appear to random noise. Another intelligence may possess the ability to compress information to the extent that, to us, their signals would appear indistinguishable from noise (an explanation for The Fermi Paradox). To facilitate predictive accuracy an AGI would tend to more compressed representations of the world, making any rationale for their behaviour more difficult to comprehend for the same reason. Communication with and control of an AGI may subsequently necessitate not only human-like compulsions and experiences, but imposed cognitive impairment.


翻译:下文简要地讨论了在与AGI(人工一般情报)进行沟通和控制方面可能出现的困难(人工一般情报),其依据是对Fermi Paradox的解释,以及此前关于标志出现和人工一般情报的工作,后者表明,推断某人的意思,代理人为别人所观察到的行为构筑了理由;然后,通信需要两名代理人在类似强迫下进行劳动,并具有类似的经验(为类似任务制定类似的解决办法);任何非人类情报都可能提出解决办法,使其行为的任何理由(因而其信号的含义)都超出一个人倾向于注意到或理解的内容的范围。此外,信号压缩得越紧,信号就越接近随机噪音。另一种情报可能具备压缩信息的能力,以至于对我们来说,其信号似乎无法与噪音区分开来(为Fermi Paradox作解释),为了便于预测准确性,AGI往往会更难为同一理由理解其行为的任何理由。与AGI的沟通和控制可能随后不仅需要人性强迫和经历,而且需要造成认知缺陷。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
28+阅读 · 2021年10月1日
Arxiv
10+阅读 · 2020年11月26日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
相关论文
Arxiv
0+阅读 · 2021年11月25日
Arxiv
28+阅读 · 2021年10月1日
Arxiv
10+阅读 · 2020年11月26日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Top
微信扫码咨询专知VIP会员