This paper presents the application of a learning control approach for the realization of a fast and reliable pick-and-place application with a spherical soft robotic arm. The arm is characterized by a lightweight design and exhibits compliant behavior due to the soft materials deployed. A soft, continuum joint is employed, which allows for simultaneous control of one translational and two rotational degrees of freedom in a single joint. This allows us to axially approach and pick an object with the attached suction cup during the pick-and-place application. A control allocation based on pressure differences and the antagonistic actuator configuration is introduced, allowing decoupling of the system dynamics and simplifying the modeling and control. A linear parameter-varying model is identified, which is parametrized by the attached load mass and a parameter related to the joint stiffness. A gain-scheduled feedback controller is proposed, which asymptotically stabilizes the robotic system for aggressive tuning and over large variations of the parameters considered. The control architecture is augmented with an iterative learning control scheme enabling accurate tracking of aggressive trajectories involving set point transitions of 60 degrees within 0.3 seconds (no mass attached) to 0.6 seconds (load mass attached). The modeling and control approach proposed results in a reliable realization of a pick-and-place application and is experimentally demonstrated.


翻译:本文介绍了对使用球形软机器人臂的快速和可靠的选角和位置应用应用的学习控制方法。 臂的特点是轻量设计,并显示出由于所部署的软材料而符合要求的行为。 采用了软的、连续的组合,允许在一个组合中同时控制一个翻译自由度和两个旋转自由度。 允许我们在选址和地点应用中用附着的抽吸杯进行轴进和挑选一个对象。 根据压力差异和对立动作器配置实行控制分配,允许系统动态脱钩并简化模型和控制。 确定了线性参数分布模型,该模型由连接的负载质量和与联合僵硬度有关的参数进行对称控制。 提议了一个增量表反馈控制器,以机械方式稳定机器人系统,以积极调节和超大型变异所考虑的参数。 根据压力差异和对控控结构进行迭代式学习控制,以便能够准确跟踪攻击性轨迹,包括60度的定点转换,并简化模型和控制模型。 确定线性参数分布模型模型模型模型模型,在0.6秒内,在0.6秒内进行可靠的实验性控制结果,在0.6秒内进行。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年4月29日
VIP会员
相关VIP内容
专知会员服务
26+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员