We present a stochastic modeling framework for atomistic propagation of a Mode I surface crack, with atoms interacting according to the Lennard-Jones interatomic potential at zero temperature. Specifically, we invoke the Cauchy-Born rule and the maximum entropy principle to infer probability distributions for the parameters of the interatomic potential. We then study how uncertainties in the parameters propagate to the quantities of interest relevant to crack propagation, namely, the critical stress intensity factor and the lattice trapping range. For our numerical investigation, we rely on an automated version of the so-called numerical-continuation enhanced flexible boundary (NCFlex) algorithm.


翻译:我们为一种模式I表面裂缝的原子传播提供了一个随机模型框架,原子在零温度下根据伦纳德-琼斯的相互作用潜力进行互动。具体地说,我们援引Cauchy-Born规则和最大星载原则来推断对间相潜力参数的概率分布。然后我们研究参数的不确定性如何扩散到与裂变有关的利息数量,即临界应力强度系数和拉蒂斯捕捉范围。对于我们的数字调查,我们依靠所谓的数字-持续增强弹性边界(NCFLex)算法的自动化版本。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
40+阅读 · 2020年9月6日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
87+阅读 · 2020年5月11日
专知会员服务
162+阅读 · 2020年1月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月21日
Arxiv
1+阅读 · 2021年6月17日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
40+阅读 · 2020年9月6日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
87+阅读 · 2020年5月11日
专知会员服务
162+阅读 · 2020年1月16日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员