Deep Reinforcement Learning (DRL) widely applies to job scheduling and resource allocation applications and remarkably improves performances. Existing resource management approaches essentially optimize makespan minimization on the fixed number of jobs. Although previous researches purport to express breakthrough performances, we alternatively corroborate the job scheduling problem in a more practical scenario where the scheduler (1) aims to minimize average latency in a steady-state condition and (2) assigns varying numbers of tasks to heterogeneous resources. Broadly, these conditions are essential in the System-on-Chip (SoC) application, which developed with high-frequency job generation and operated distributed resources in a parallel. We assume the indefinite jobs are continuously injected into the simulation in a stream fashion and empirically discover that existing research hard adapts in the suggested scenario. Moreover, the agent must tackle concurrent observations caused by the task dependency. This paper introduces the Eclectic Interaction Matching technique to tackle such difficulties and the System-on-Chip Resource AdapTivE Scheduling (SoCRATES) that specialized in scheduling hierarchical jobs to heterogeneous resources the SoC application. The proposed method outperforms other existing RL-based schedulers and state-of-the-art heuristic schedulers.
翻译:深入强化学习(DRL)广泛适用于工作时间安排和资源分配应用程序,并显著改善绩效。现有的资源管理方法基本上优化了固定职位数量的最小化。虽然以前的研究旨在显示突破性业绩,但我们也可以在一个更实际的情景中证实工作时间安排问题,其中调度员(1)旨在稳定状态下尽量减少平均延迟度,(2)为多种资源分配不同的任务。这些条件在系统对齐工作应用中至关重要,该应用以高频创造就业机会和平行操作分配资源开发。我们假设无限期工作以流体方式不断注入模拟,并实际发现现有研究在所建议的情景中难以适应。此外,该代理商必须处理任务依赖性引起的并行观测。本文件介绍了应对此类困难的选用互动技术以及专门将分级工作排入混合资源软件应用的系统对齐资源AdapTivE Steltingling(SOCRATES) (SOCRATES) 。拟议方法优于其他基于RL的排程和状态列表。