We introduce new goodness-of-fit tests and corresponding confidence bands for distribution functions. They are inspired by multi-scale methods of testing and based on refined laws of the iterated logarithm for the normalized uniform empirical process $\mathbb{U}_n (t)/\sqrt{t(1-t)}$ and its natural limiting process, the normalized Brownian bridge process $\mathbb{U}(t)/\sqrt{t(1-t)}$. The new tests and confidence bands refine the procedures of Berk and Jones (1979) and Owen (1995). Roughly speaking, the high power and accuracy of the latter methods in the tail regions of distributions are essentially preserved while gaining considerably in the central region. The goodness-of-fit tests perform well in signal detection problems involving sparsity, as in Ingster (1997), Donoho and Jin (2004) and Jager and Wellner (2007), but also under contiguous alternatives. Our analysis of the confidence bands sheds new light on the influence of the underlying $\phi$-divergences.
翻译:我们引入了新的健康测试和相应的分配功能信任带,这些测试和信任带受多种规模测试方法的启发,并基于标准化统一经验进程($\mathbb{U ⁇ n (t)/\\sqrt{t(1-t)})美元及其自然限制过程的循环对数法的完善,即正常的布朗桥进程($\mathbb{U})(t)/\sqrt{t(1-t)}美元。新的测试和信任带完善了伯克、琼斯(1979年)和欧文(1995年)的程序。粗略地说,后一种方法在分销尾端区域的威力和精确度基本上得以保持,同时在中部地区大幅增长。良好的测试在信号探测问题方面效果良好,如英格斯特(1997年)、多诺霍和金(2004年)以及贾格和威尔纳(2007年),但也处于毗连的替代品之下。我们对信任带的分析为基本价格波动的影响提供了新的线索。