Conformal inference is a flexible methodology for transforming the predictions made by any black-box model (e.g. neural nets, random forests) into valid prediction sets. The only necessary assumption is that the training and test data be exchangeable (e.g. i.i.d.). Unfortunately, this assumption is usually unrealistic in online environments in which the processing generating the data may vary in time and consecutive data-points are often temporally correlated. In this article, we develop an online algorithm for producing prediction intervals that are robust to these deviations. Our methods build upon conformal inference and thus can be combined with any black-box predictor. We show that the coverage error of our algorithm is controlled by the size of the underlying change in the environment and thus directly connect the size of the distribution shift with the difficulty of the prediction problem. Finally, we apply our procedure in two real-world settings and find that our method produces robust prediction intervals under real-world dynamics.
翻译:正规的推断是一种灵活的方法,将任何黑盒模型(如神经网、随机森林)所作的预测转换成有效的预测组。唯一必要的假设是培训和测试数据是可以交换的(例如,d)。不幸的是,这种假设在网上环境中通常是不切实际的,在网上环境中,生成数据的处理可能时间不同,而连续的数据点往往在时间上相互关联。在本篇文章中,我们开发了一种在线算法,用于制作与这些偏差相适应的预测间隔。我们的方法建立在一致的推断基础上,因此可以与任何黑盒预测器结合起来。我们表明,我们算法的覆盖错误受环境基本变化规模的制约,从而将分布变化的规模与预测问题的难度直接联系起来。最后,我们在两个现实世界环境中应用了我们的程序,发现我们的方法在现实世界动态下产生了稳健的预测间隔。