This paper studies the problem of finding the smallest $n$-simplex enclosing a given $n^{\text{th}}$-degree polynomial curve. Although the Bernstein and B-Spline polynomial bases provide feasible solutions to this problem, the simplexes obtained by these bases are not the smallest possible, which leads to undesirably conservative results in many applications. We first prove that the polynomial basis that solves this problem (MINVO basis) also solves for the $n^\text{th}$-degree polynomial curve with largest convex hull enclosed in a given $n$-simplex. Then, we present a formulation that is \emph{independent} of the $n$-simplex or $n^{\text{th}}$-degree polynomial curve given. By using Sum-Of-Squares (SOS) programming, branch and bound, and moment relaxations, we obtain high-quality feasible solutions for any $n\in\mathbb{N}$ and prove numerical global optimality for $n=1,2,3$. The results obtained for $n=3$ show that, for any given $3^{\text{rd}}$-degree polynomial curve, the MINVO basis is able to obtain an enclosing simplex whose volume is $2.36$ and $254.9$ times smaller than the ones obtained by the Bernstein and B-Spline bases, respectively. When $n=7$, these ratios increase to $902.7$ and $2.997\cdot10^{21}$, respectively.
翻译:本文研究了找到一个最小的美元标准值的问题。 尽管 Bernstein 和 B- Spline 的多元度基点为这一问题提供了可行的解决方案, 但这些基点获得的简单值并不是最小的, 从而在许多应用中导致不可取的保守结果。 我们首先证明, 解决这个问题的多元基点( MINVO 基础) 也解决了美元标准值为 $x text{th} $- 度多元度曲线, 以给定的美元标准值为最大锥体。 尽管 Bernstein 和 B- Spline 的多元度基点为这一问题提供了可行的解决方案。 尽管 Bernstein 和 B- Spline 的基点提供了可行的解决方案, 但这些基点为 $- sopexx 或 $n_ text_ $- colormocial munical cural。 我们为任何美元标准值为$n- text{thn\ n= 2, 3_ 美元, 我们为这些标准值为每美元标准值为 $x $x $xxxxxxxx 。 。 。 的计算结果为每美元值为每美元为$xxxxxxxxxxxxx $0.0.0.2xxxxxxxxxxxxxxx