We prove a simple, nearly tight lower bound on the approximate degree of the two-level $\mathsf{AND}$-$\mathsf{OR}$ tree using symmetrization arguments. Specifically, we show that $\widetilde{\mathrm{deg}}(\mathsf{AND}_m \circ \mathsf{OR}_n) = \widetilde{\Omega}(\sqrt{mn})$. We prove this lower bound via reduction to the $\mathsf{OR}$ function through a series of symmetrization steps, in contrast to most other proofs that involve formulating approximate degree as a linear program [BT13, She13, BDBGK18]. Our proof also demonstrates the power of a symmetrization technique involving Laurent polynomials (polynomials with negative exponents) that was previously introduced by Aaronson, Kothari, Kretschmer, and Thaler [AKKT19].


翻译:具体地说,我们用对称参数来证明,在两种水平的树的大约含量上,我们用对称参数来证明一个简单、近乎紧凑的下限。我们用一系列的对称步骤来证明,通过对称步骤来减少对美元对美元的作用,我们证明这一较低约束,而大多数其他证据则涉及将近似程度作为线性程序[BT13、She13、BDBGK18]。我们的证据还表明,以前由Aaronson、Kothhari、Kretschmer和Thaller[AKKT19]引进的洛朗多球(具有负功率的极人)的对称技术的力量。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
53+阅读 · 2020年9月7日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Arxiv
0+阅读 · 2021年5月28日
Arxiv
0+阅读 · 2021年5月26日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员