Implicit neural representation (INR) is a popular approach for arbitrary-scale image super-resolution (SR), as a key component of INR, position encoding improves its representation ability. Motivated by position encoding, we propose orthogonal position encoding (OPE) - an extension of position encoding - and an OPE-Upscale module to replace the INR-based upsampling module for arbitrary-scale image super-resolution. Same as INR, our OPE-Upscale Module takes 2D coordinates and latent code as inputs; however it does not require training parameters. This parameter-free feature allows the OPE-Upscale Module to directly perform linear combination operations to reconstruct an image in a continuous manner, achieving an arbitrary-scale image reconstruction. As a concise SR framework, our method has high computing efficiency and consumes less memory comparing to the state-of-the-art (SOTA), which has been confirmed by extensive experiments and evaluations. In addition, our method has comparable results with SOTA in arbitrary scale image super-resolution. Last but not the least, we show that OPE corresponds to a set of orthogonal basis, justifying our design principle.


翻译:隐性神经代表(INR)是任意比例图像超分辨率(SR)的流行方法,作为IRN的关键组成部分,位置编码提高了它的显示能力。根据位置编码,我们提议正方位编码(OPE)-位置编码(OPE)-位置编码的延伸编码(OPE)-定位编码(OPE-Upsize 模块)-取代基于IRN的任意比例图像超分辨率(SOTA)的升级模版。和IRN一样,我们的OPE升级模版将 2D 坐标和潜在代码作为投入使用;但不需要培训参数。这一无参数功能使OPE-Uporage模块能够直接进行线性组合操作,以持续的方式重建图像,实现任意规模图像重建。作为一个简洁的SR框架,我们的方法具有高计算效率,并且消耗的内存量较少,这已得到广泛试验和评价的证实。此外,我们的方法与SOTA的任意比例图像超分辨率(SOTA)相类似。最后但并非最不重要的是,我们显示OPE符合一套正态设计原则。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2023年4月24日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
33+阅读 · 2022年2月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员